Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Lancet Healthy Longev ; 4(11): e600-e607, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37924841

RESUMO

BACKGROUND: Preventing transmission is crucial for reducing infections with multidrug-resistant organisms (MDROs) in nursing homes. To identify resident characteristics associated with MDRO spread, we investigated associations between patient characteristics and contamination of their proximate room surfaces with vancomycin-resistant enterococci (VRE). METHODS: In this retrospective observational study, we used demographic and clinical data (including data on comorbidities, physical independence, catheter use within the past 30 days, and antibiotic exposure within the past 30 days) and surveillance cultures of patient body sites and room surfaces at enrolment and during weekly follow-up visits within the first month, and monthly thereafter (up to 6 months), in six US nursing homes collected in a previous clinical trial (September, 2016, to August, 2018). We did 16S rRNA gene sequencing on perirectal surveillance swabs to investigate the association between the gut microbiota and the culture status of participants and their rooms. FINDINGS: We included 245 participants (mean age 72·5 years [SD 13·6]; 111 [45%] were men, 134 [55%] were women, 132 [54%] were non-Hispanic white, and 112 [46%] were African American). We collected 2802 participant samples and 5592 environmental samples. At baseline, VRE colonisation was present in 49 (20%) participants, with environmental surfaces being contaminated in 36 (73%) of these patients. Hand contamination among VRE-colonised participants was more common in those with environmental contamination compared with those without (50 [51%] of 99 vs seven [13%] of 55; p<0·0001). We found a correlation between hand contamination and both groin and perirectal colonisation and contamination of various high-touch room surfaces (Cohen's κ 0·43). We found participant microbiota composition to be associated with antibiotic receipt within the past 30 days (high-risk antibiotics p=0·011 and low-risk antibiotics p=0·0004) and participant VRE colonisation status, but not environmental contamination among VRE-colonised participants (participant only vs uncolonised p=0·071, both participant and environment vs uncolonised p=0·025, and participant only vs participant and environment p=0·29). Multivariable analysis to identify independent factors associated with VRE-colonised participants contaminating their environment identified antibiotic exposure (adjusted odds ratio 2·75 [95% CI 1·22-6·16]) and male sex (2·75 [1·24-6·08]) as being associated with increased risk of environmental contamination, and physical dependence as being associated with a reduced risk of environmental contamination (0·91 [0·83-0·99]). INTERPRETATION: Our data support antibiotic use and interaction with proximal surfaces by physically independent nursing home residents as under-appreciated drivers of environmental contamination among VRE-colonised residents. Integrating resident hand-hygiene education and antimicrobial stewardship will strengthen efforts to reduce MDROs in nursing homes. FUNDING: US Centers for Disease Control and Prevention, National Institute of Health, Canadian Institutes of Health Research, and University of Michigan.


Assuntos
Microbioma Gastrointestinal , Enterococos Resistentes à Vancomicina , Idoso , Feminino , Humanos , Masculino , Antibacterianos/uso terapêutico , Canadá , Microbioma Gastrointestinal/genética , Casas de Saúde , Fatores de Risco , RNA Ribossômico 16S , Estados Unidos/epidemiologia , Enterococos Resistentes à Vancomicina/genética , Idoso de 80 Anos ou mais
2.
Nat Med ; 29(10): 2526-2534, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37723252

RESUMO

Despite enhanced infection prevention efforts, Clostridioides difficile remains the leading cause of healthcare-associated infections in the United States. Current prevention strategies are limited by their failure to account for patients who carry C. difficile asymptomatically, who may act as hidden reservoirs transmitting infections to other patients. To improve the understanding of asymptomatic carriers' contribution to C. difficile spread, we conducted admission and daily longitudinal culture-based screening for C. difficile in a US-based intensive care unit over nine months and performed whole-genome sequencing on all recovered isolates. Despite a high burden of carriage, with 9.3% of admissions having toxigenic C. difficile detected in at least one sample, only 1% of patients culturing negative on admission to the unit acquired C. difficile via cross-transmission. While patients who carried toxigenic C. difficile on admission posed minimal risk to others, they themselves had a 24-times greater risk for developing a healthcare-onset C. difficile infection than noncarriers. Together, these findings suggest that current infection prevention practices can be effective in preventing nosocomial cross-transmission of C. difficile, and that decreasing C. difficile infections in hospitals further will require interventions targeting the transition from asymptomatic carriage to infection.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Humanos , Estados Unidos/epidemiologia , Clostridioides difficile/genética , Clostridioides , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/prevenção & controle , Genômica , Unidades de Terapia Intensiva
3.
Cell Rep ; 42(8): 112861, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37523264

RESUMO

Clostridioides difficile produces toxins that damage the colonic epithelium, causing colitis. Variation in disease severity is poorly understood and has been attributed to host factors and virulence differences between C. difficile strains. We test 23 epidemic ST1 C. difficile clinical isolates for their virulence in mice. All isolates encode a complete Tcd pathogenicity locus and achieve similar colonization densities. However, disease severity varies from lethal to avirulent infections. Genomic analysis of avirulent isolates reveals a 69-bp deletion in the cdtR gene, which encodes a response regulator for binary toxin expression. Deleting the 69-bp sequence in virulent R20291 strain renders it avirulent in mice with reduced toxin gene transcription. Our study demonstrates that a natural deletion within cdtR attenuates virulence in the epidemic ST1 C. difficile isolates without reducing colonization and persistence. Distinguishing strains on the basis of cdtR may enhance the specificity of diagnostic tests for C. difficile colitis.


Assuntos
Clostridioides difficile , Colite , Animais , Camundongos , Virulência/genética , Clostridioides difficile/genética , Clostridioides/metabolismo , Genômica , Colite/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
4.
bioRxiv ; 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36711955

RESUMO

Clostridioides difficile (C. difficile) , a leading cause of nosocomial infection, produces toxins that damage the colonic epithelium and results in colitis that varies from mild to fulminant. Variation in disease severity is poorly understood and has been attributed to host factors (age, immune competence and intestinal microbiome composition) and/or virulence differences between C. difficile strains, with some, such as the epidemic BI/NAP1/027 (MLST1) strain, being associated with greater virulence. We tested 23 MLST1(ST1) C. difficile clinical isolates for virulence in antibiotic-treated C57BL/6 mice. All isolates encoded a complete Tcd pathogenicity locus and achieved similar colonization densities in mice. Disease severity varied, however, with 5 isolates causing lethal infections, 16 isolates causing a range of moderate infections and 2 isolates resulting in no detectable disease. The avirulent ST1 isolates did not cause disease in highly susceptible Myd88 -/- or germ-free mice. Genomic analysis of the avirulent isolates revealed a 69 base-pair deletion in the N-terminus of the cdtR gene, which encodes a response regulator for binary toxin (CDT) expression. Genetic deletion of the 69 base-pair cdtR sequence in the highly virulent ST1 R20291 C. difficile strain rendered it avirulent and reduced toxin gene transcription in cecal contents. Our study demonstrates that a natural deletion within cdtR attenuates virulence in the epidemic ST1 C. difficile strain without reducing colonization and persistence in the gut. Distinguishing strains on the basis of cdtR may enhance the specificity of diagnostic tests for C. difficile colitis.

5.
Nat Commun ; 13(1): 4459, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915063

RESUMO

Members of the Klebsiella pneumoniae species complex frequently colonize the gut and colonization is associated with subsequent infection. To identify genes associated with progression from colonization to infection, we undertook a case-control comparative genomics study. Concordant cases (N = 85), where colonizing and invasive isolates were identical strain types, were matched to asymptomatically colonizing controls (N = 160). Thirty-seven genes are associated with infection, 27 of which remain significant following adjustment for patient variables and bacterial phylogeny. Infection-associated genes are not previously characterized virulence factors, but instead a diverse group of stress resistance, regulatory and antibiotic resistance genes, despite careful adjustment for antibiotic exposure. Many genes are plasmid borne, and for some, the relationship with infection is mediated by gut dominance. Five genes were validated in a geographically-independent cohort of colonized patients. This study identifies several genes reproducibly associated with progression to infection in patients colonized by diverse Klebsiella.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Genômica , Humanos , Klebsiella/genética , Infecções por Klebsiella/genética , Infecções por Klebsiella/microbiologia , Plasmídeos/genética
6.
Lancet Microbe ; 3(9): e652-e662, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35803292

RESUMO

BACKGROUND: A crucial barrier to the routine application of whole-genome sequencing (WGS) for infection prevention is the insufficient criteria for determining whether a genomic linkage is consistent with transmission within the facility. We evaluated the use of single-nucleotide variant (SNV) thresholds, as well as a novel threshold-free approach, for inferring transmission linkages in a high-transmission setting. METHODS: We did a retrospective genomic epidemiology analysis of samples previously collected in the context of an intervention study at a long-term acute care hospital in the USA. We performed WGS on 435 isolates of Klebsiella pneumoniae harbouring the blaKPC carbapenemase (KPC-Kp) collected from 256 patients through admission and surveillance culturing (once every 2 weeks) of almost every patient who was admitted to hospital over a 1-year period. FINDINGS: Our analysis showed that the standard approach of using an SNV threshold to define transmission would lead to false-positive and false-negative inferences. False-positive inferences were driven by the frequent importation of closely related strains, which were presumably linked via transmission at connected health-care facilities. False-negative inferences stemmed from the diversity of colonising populations that were spread among patients, with multiple examples of hypermutator strain emergence within patients and, as a result, putative transmission links separated by large genetic distances. Motivated by limitations of an SNV threshold, we implemented a novel threshold-free transmission cluster inference approach, in which each of the acquired KPC-Kp isolates were linked back to the imported KPC-Kp isolate with which it shared the most variants. This approach yielded clusters that varied in levels of genetic diversity but where 105 (81%) of 129 unique strain acquisition events were associated with epidemiological links in the hospital. Of 100 patients who acquired KPC-Kp isolates that were included in a cluster, 47 could be linked to a single patient who was positive for KPC-Kp at admission, compared with 31 and 25 using 10 SNV and 20 SNV thresholds, respectively. Holistic examination of clusters highlighted extensive variation in the magnitude of onward transmission stemming from more than 100 importation events and revealed patterns in cluster propagation that could inform improvements to infection prevention strategies. INTERPRETATION: Our results show how the integration of culture surveillance data into genomic analyses can overcome limitations of cluster detection based on SNV-thresholds and improve the ability to track pathways of pathogen transmission in health-care settings. FUNDING: US Center for Disease Control and Prevention and University of Michigan.


Assuntos
Infecções por Klebsiella , Surtos de Doenças , Genômica , Humanos , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Estudos Retrospectivos
7.
mBio ; 13(3): e0103522, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35546538

RESUMO

More than half of women will experience a urinary tract infection (UTI), with uropathogenic Escherichia coli (UPEC) causing ~80% of uncomplicated cases. Iron acquisition systems are essential for uropathogenesis, and UPEC strains encode highly diverse iron acquisition systems, underlining their importance. However, a recent UPEC clinical isolate, HM7, lacks this diversity and instead encodes the synthesis pathway for a sole siderophore, enterobactin. To determine if HM7 possesses unidentified iron acquisition systems, we performed RNA sequencing under iron-limiting conditions and demonstrated that the ferric citrate uptake system (fecABCDE and fecIR) was highly upregulated. Importantly, there are high levels of citrate within urine, some of which is bound to iron, and the fec system is enriched in UPEC isolates compared to fecal strains. Therefore, we hypothesized that HM7 and other similar strains use the fec system to acquire iron in the host. Deletion of both enterobactin biosynthesis and ferric citrate uptake (ΔfecA/ΔentB) abrogates use of ferric citrate as an iron source, and fecA provides an advantage in human urine in the absence of enterobactin. However, in a UTI mouse model, fecA is a fitness factor independent of enterobactin production, likely due to the action of host lipocalin-2 chelating ferrienterobactin. These findings indicate that ferric citrate uptake is used as an iron source when siderophore efficacy is limited, such as in the host during UTI. Defining these novel compensatory mechanisms and understanding the nutritional hierarchy of preferred iron sources within the urinary tract are important in the search for new approaches to combat UTI. IMPORTANCE UPEC, the primary causative agent of uncomplicated UTI, is responsible for five billion dollars in health care costs in the United States each year. Rates of antibiotic resistance are on the rise; therefore, it is vital to understand the mechanisms of UPEC pathogenesis to uncover potential targets for novel therapeutics. Iron acquisition systems used to obtain iron from sequestered host sources are essential for UPEC survival during UTI and have been used as vaccine targets to prevent infection. This study reveals the ferric citrate uptake system is another important iron acquisition system that is highly enriched in UPEC strains. Ferric citrate uptake has not previously been associated with UPEC isolates, underlining the importance of the continued study of these strains to fully understand their mechanisms of pathogenesis.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Animais , Ácido Cítrico/metabolismo , Enterobactina/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Compostos Férricos , Humanos , Ferro/metabolismo , Camundongos , Receptores de Superfície Celular/metabolismo , Sideróforos/metabolismo , Infecções Urinárias/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
8.
J Infect Dis ; 226(1): 157-166, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35172338

RESUMO

BACKGROUND: Hospital-onset (HO) methicillin-resistant Staphylococcus aureus (MRSA) infections have declined over the past decade due to infection control strategies; community-onset (CO) and healthcare-associated community-onset (HACO) MRSA, particularly USA300, has declined less. We examined the role of community strains to explain the difference. METHODS: We performed whole-genome sequencing (WGS) on MRSA clinical isolates from Cook County Health patients during 2011-2014. We defined infections as CO, HO, or HACO epidemiologically. We integrated genomic, community exposure, and statewide hospital discharge data to infer MRSA origin. RESULTS: Among 1020 individuals with available WGS, most were USA300 wound infections (580 CO, 143 HO, 297 HACO). USA300 HO, CO, and HACO infections were intermixed on the USA300 phylogeny, consistent with common strains circulating across community and healthcare settings. Community exposures (eg, substance abuse, incarceration, homelessness) were associated with HACO and HO infections, and genetically linked individuals from both groups had little overlap in healthcare facilities, supporting community origins. Most repeat infections-over months to years-occurred in individuals persistently carrying their own strains. These individuals were more likely to have genetic linkages, suggesting a role of persistent colonization in transmission. CONCLUSIONS: Efforts to reduce presumed nosocomial USA300 spread may require understanding and controlling community sources and transmission networks, particularly for repeat infections.


Assuntos
Infecções Comunitárias Adquiridas , Infecção Hospitalar , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Infecções Comunitárias Adquiridas/epidemiologia , Infecção Hospitalar/epidemiologia , Atenção à Saúde , Genômica , Humanos , Infecções Estafilocócicas/epidemiologia
9.
Open Forum Infect Dis ; 9(3): ofac049, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35211635

RESUMO

BACKGROUND: It is unclear if there are differences in methicillin-resistant Staphylococcus aureus (MRSA) risk between sexes in high-risk populations. METHODS: Females incarcerated at the Cook County Jail were enrolled within 72 hours of intake. Surveillance cultures (nares, throat, groin) were collected to determine the prevalence of MRSA colonization. A survey was administered to identify colonization predictors. Univariate and multivariate analyses were performed to identify predictors of colonization at intake. Genomic sequencing was performed on MRSA colonization and archived clinical isolates. RESULTS: Two hundred fifty women were enrolled (70% African American, 15% Hispanic), with 70% previously in jail. The prevalence of MRSA colonization at intake was 20%, with 42% of those colonized solely in the throat or groin. Univariate predictors of MRSA colonization at entrance were illicit drug use, unstable housing, engaging in anal sex, recent exchange of sex for drugs/money, and a higher number of recent sexual partners. With multivariate adjustment for race/ethnicity, use of needles for illicit drugs was a significant predictor of MRSA. Use of illicit drugs was also associated with inclusion in a genomic cluster. Nares colonization was significantly associated with not being in a genomic cluster (18.8% vs 78.6%; P < .001), whereas exclusive extranasal colonization was associated (odds ratio, 15.89; P < .001). CONCLUSIONS: We found that a high proportion (20%) of females entered jail colonized with MRSA, suggesting that previously reported sex disparities of a lower risk in women may not apply to high-risk populations. Our findings suggest high-risk activities or venues in the community for MRSA, with potential for directing sex-specific interventions.

10.
Microb Genom ; 8(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35037617

RESUMO

Increasing evidence of regional pathogen transmission networks highlights the importance of investigating the dissemination of multidrug-resistant organisms (MDROs) across a region to identify where transmission is occurring and how pathogens move across regions. We developed a framework for investigating MDRO regional transmission dynamics using whole-genome sequencing data and created regentrans, an easy-to-use, open source R package that implements these methods (https://github.com/Snitkin-Lab-Umich/regentrans). Using a dataset of over 400 carbapenem-resistant isolates of Klebsiella pneumoniae collected from patients in 21 long-term acute care hospitals over a one-year period, we demonstrate how to use our framework to gain insights into differences in inter- and intra-facility transmission across different facilities and over time. This framework and corresponding R package will allow investigators to better understand the origins and transmission patterns of MDROs, which is the first step in understanding how to stop transmission at the regional level.


Assuntos
Farmacorresistência Bacteriana Múltipla , Genômica/métodos , Infecções por Klebsiella/transmissão , Klebsiella pneumoniae/classificação , Carbapenêmicos/farmacologia , Infecção Hospitalar/microbiologia , Infecção Hospitalar/transmissão , Bases de Dados Genéticas , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Filogenia , Software , Sequenciamento Completo do Genoma
11.
mBio ; 12(4): e0111421, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34225485

RESUMO

Bloodstream infections (BSI) are a major public health burden due to high mortality rates and the cost of treatment. The impact of BSI is further compounded by a rise in antibiotic resistance among Gram-negative species associated with these infections. Escherichia coli, Serratia marcescens, Klebsiella pneumoniae, Enterobacter hormaechei, Citrobacter freundii, and Acinetobacter baumannii are all common causes of BSI, which can be recapitulated in a murine model. The objective of this study was to characterize infection kinetics and bacterial replication rates during bacteremia for these six pathogens to gain a better understanding of bacterial physiology during infection. Temporal observations of bacterial burdens of the tested species demonstrated varied abilities to establish colonization in the spleen, liver, or kidney. K. pneumoniae and S. marcescens expanded rapidly in the liver and kidney, respectively. Other organisms, such as C. freundii and E. hormaechei, were steadily cleared from all three target organs throughout the infection. In situ replication rates measured by whole-genome sequencing of bacterial DNA recovered from murine spleens demonstrated that each species was capable of sustained replication at 24 h postinfection, and several species demonstrated <60-min generation times. The relatively short generation times observed in the spleen were in contrast to an overall decrease in bacterial burden for some species, suggesting that the rate of immune-mediated clearance exceeded replication. Furthermore, bacterial generation times measured in the murine spleen approximated those measured during growth in human serum cultures. Together, these findings provide insight into the infection kinetics of six medically important species during bacteremia. IMPORTANCE Bloodstream infections are a global public health problem. The goal of this work was to determine the replication characteristics of Gram-negative bacterial species in the host following bloodstream infection. The number of bacteria in major organs is likely determined by a balance between replication rates and the ability of the host to clear bacteria. We selected a cohort of six species from three families that represent common causative agents of bloodstream infections in humans and determined their replication rates in a murine bacteremia model. We found that the bacteria grow rapidly in the spleen, demonstrating that they can obtain the necessary nutrients for growth in this environment. However, the overall number of bacteria decreased in most cases, suggesting that killing of bacteria outpaces their growth. Through a better understanding of how bacteria replicate during bloodstream infections, we aim to gain insight into future means of combating these infections.


Assuntos
Bacteriemia/microbiologia , Carga Bacteriana/métodos , Replicação do DNA , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/fisiologia , Infecções por Bactérias Gram-Negativas/sangue , Animais , Antibacterianos/farmacologia , Estudos de Coortes , Feminino , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana
12.
Microbiol Spectr ; 9(1): e0037621, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34287060

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of health care-associated (HA) and community-associated (CA) infections. USA300 strains are historically CA-MRSA, while USA100 strains are HA-MRSA. Here, we update an antibiotic prediction rule to distinguish these two genotypes based on antibiotic resistance phenotype using whole-genome sequencing (WGS), a more discriminatory methodology than pulsed-field gel electrophoresis (PFGE). MRSA clinical isolates collected from 2007 to 2017 underwent WGS; associated epidemiologic data were ascertained. In developing the rule, we examined MRSA isolates that included a population with a history of incarceration. Performance characteristics of antibiotic susceptibility for predicting USA300 compared to USA100, as defined by WGS, were examined. Phylogenetic analysis was performed to examine resistant USA300 clades. We identified 275 isolates (221 USA300, 54 USA100). Combination susceptibility to clindamycin or levofloxacin performed the best overall (sensitivity 80.7%, specificity 75.9%) to identify USA300. The average number of antibiotic classes with resistance was higher for USA100 (3 versus 2, P < 0.001). Resistance to ≤2 classes was predictive for USA300 (area under the curve (AUC) 0.84, 95% confidence interval 0.78 to 0.90). Phylogenetic analysis identified a cluster of USA300 strains characterized by increased resistance among incarcerated individuals. Using a combination of clindamycin or levofloxacin susceptibility, or resistance to ≤2 antibiotic classes, was predictive of USA300 as defined by WGS. Increased resistance was observed among individuals with incarceration exposure, suggesting circulation of a more resistant USA300 clade among at-risk community networks. Our phenotypic prediction rule could be used as an epidemiologic tool to describe community and nosocomial shifts in USA300 MRSA and quickly identify emergence of lineages with increased resistance. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of health care-associated (HA) and community-associated (CA) infections, but the epidemiology of these strains (USA100 and USA300, respectively) now overlaps in health care settings. Although sequencing technology has become more available, many health care facilities still lack the capabilities to perform these analyses. In this study, we update a simple prediction rule based on antibiotic resistance phenotype with integration of whole-genome sequencing (WGS) to predict strain type based on antibiotic resistance profiles that can be used in settings without access to molecular strain typing methods. This prediction rule has many potential epidemiologic applications, such as analysis of retrospective data sets, regional monitoring, and ongoing surveillance of CA-MRSA infection trends. We demonstrate application of this rule to identify an emerging USA300 strain with increased antibiotic resistance among incarcerated individuals that deviates from the rule.


Assuntos
Genômica , Prisões Locais , Staphylococcus aureus Resistente à Meticilina/genética , Fenótipo , Infecções Estafilocócicas/transmissão , Antibacterianos , Infecções Comunitárias Adquiridas/epidemiologia , Infecções Comunitárias Adquiridas/transmissão , Humanos , Meticilina , Staphylococcus aureus Resistente à Meticilina/classificação , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Tipagem Molecular , Filogenia , Infecções Estafilocócicas/epidemiologia , Staphylococcus aureus/genética
13.
Microb Genom ; 7(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34180789

RESUMO

Clostridioides difficile is the leading cause of healthcare-associated infectious diarrhoea. However, it is increasingly appreciated that healthcare-associated infections derive from both community and healthcare environments, and that the primary sites of C. difficile transmission may be strain-dependent. We conducted a multisite genomic epidemiology study to assess differential genomic evidence of healthcare vs community spread for two of the most common C. difficile strains in the USA: sequence type (ST) 1 (associated with ribotype 027) and ST2 (associated with ribotype 014/020). We performed whole-genome sequencing and phylogenetic analyses on 382 ST1 and ST2 C. difficile isolates recovered from stool specimens collected during standard clinical care at 3 geographically distinct US medical centres between 2010 and 2017. ST1 and ST2 isolates both displayed some evidence of phylogenetic clustering by study site, but clustering was stronger and more apparent in ST1, consistent with our healthcare-based study more comprehensively sampling local transmission of ST1 compared to ST2 strains. Analyses of pairwise single-nucleotide variant (SNV) distance distributions were also consistent with more evidence of healthcare transmission of ST1 compared to ST2, with 44 % of ST1 isolates being within two SNVs of another isolate from the same geographical collection site compared to 5.5 % of ST2 isolates (P-value=<0.001). Conversely, ST2 isolates were more likely to have close genetic neighbours across disparate geographical sites compared to ST1 isolates, further supporting non-healthcare routes of spread for ST2 and highlighting the potential for misattributing genomic similarity among ST2 isolates to recent healthcare transmission. Finally, we estimated a lower evolutionary rate for the ST2 lineage compared to the ST1 lineage using Bayesian timed phylogenomic analyses, and hypothesize that this may contribute to observed differences in geographical concordance among closely related isolates. Together, these findings suggest that ST1 and ST2, while both common causes of C. difficile infection in hospitals, show differential reliance on community and hospital spread. This conclusion supports the need for strain-specific criteria for interpreting genomic linkages and emphasizes the importance of considering differences in the epidemiology of circulating strains when devising interventions to reduce the burden of C. difficile infections.


Assuntos
Clostridioides difficile/genética , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/transmissão , Atenção à Saúde , Genômica , Epidemiologia Molecular , Teorema de Bayes , Clostridioides difficile/classificação , Infecção Hospitalar/epidemiologia , Diarreia/microbiologia , Fezes/microbiologia , Genoma Bacteriano , Hospitais , Humanos , Filogenia , Ribotipagem , Estados Unidos/epidemiologia , Sequenciamento Completo do Genoma
14.
Clin Infect Dis ; 73(8): 1431-1439, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33999991

RESUMO

BACKGROUND: Carbapenem-resistant Enterobacterales (CRE) harboring blaKPC have been endemic in Chicago-area healthcare networks for more than a decade. During 2016-2019, a series of regional point-prevalence surveys identified increasing prevalence of blaNDM-containing CRE in multiple long-term acute care hospitals (LTACHs) and ventilator-capable skilled nursing facilities (vSNFs). We performed a genomic epidemiology investigation of blaNDM-producing CRE to understand their regional emergence and spread. METHODS: We performed whole-genome sequencing on New Delhi metallo-beta-lactamase (NDM)+ CRE isolates from 4 point-prevalence surveys across 35 facilities (LTACHs, vSNFs, and acute care hospital medical intensive care units) in the Chicago area and investigated the genomic relatedness and transmission dynamics of these isolates over time. RESULTS: Genomic analyses revealed that the rise of NDM+ CRE was due to the clonal dissemination of an sequence type (ST) 147 Klebsiella pneumoniae strain harboring blaNDM-1 on an IncF plasmid. Dated phylogenetic reconstructions indicated that ST147 was introduced into the region around 2013 and likely acquired NDM around 2015. Analyzing the relatedness of strains within and between facilities supported initial increases in prevalence due to intrafacility transmission in certain vSNFs, with evidence of subsequent interfacility spread among LTACHs and vSNFs connected by patient transfer. CONCLUSIONS: We identified a regional outbreak of blaNDM-1 ST147 that began in and disseminated across Chicago area post-acute care facilities. Our findings highlight the importance of performing genomic surveillance at post-acute care facilities to identify emerging threats.


Assuntos
Klebsiella pneumoniae , Cuidados Semi-Intensivos , Humanos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Filogenia
15.
mSystems ; 6(2)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727393

RESUMO

Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a critical-priority antibiotic resistance threat that has emerged over the past several decades, spread across the globe, and accumulated resistance to last-line antibiotic agents. While CRKP infections are associated with high mortality, only a subset of patients acquiring CRKP extraintestinal colonization will develop clinical infection. Here, we sought to ascertain the relative importance of patient characteristics and CRKP genetic background in determining patient risk of infection. Machine learning models classifying colonization versus infection were built using whole-genome sequences and clinical metadata from a comprehensive set of 331 CRKP extraintestinal isolates collected across 21 long-term acute-care hospitals over the course of a year. Model performance was evaluated based on area under the receiver operating characteristic curve (AUROC) on held-out test data. We found that patient and genomic features were predictive of clinical CRKP infection to similar extents (AUROC interquartile ranges [IQRs]: patient = 0.59 to 0.68, genomic = 0.55 to 0.61, combined = 0.62 to 0.68). Patient predictors of infection included the presence of indwelling devices, kidney disease, and length of stay. Genomic predictors of infection included presence of the ICEKp10 mobile genetic element carrying the yersiniabactin iron acquisition system and disruption of an O-antigen biosynthetic gene in a sublineage of the epidemic ST258 clone. Altered O-antigen biosynthesis increased association with the respiratory tract, and subsequent ICEKp10 acquisition was associated with increased virulence. These results highlight the potential of integrated models including both patient and microbial features to provide a more holistic understanding of patient clinical trajectories and ongoing within-lineage pathogen adaptation.IMPORTANCE Multidrug-resistant organisms, such as carbapenem-resistant Klebsiella pneumoniae (CRKP), colonize alarmingly large fractions of patients in regions of endemicity, but only a subset of patients develop life-threatening infections. While patient characteristics influence risk for infection, the relative contribution of microbial genetic background to patient risk remains unclear. We used machine learning to determine whether patient and/or microbial characteristics can discriminate between CRKP extraintestinal colonization and infection across multiple health care facilities and found that both patient and microbial factors were predictive. Examination of informative microbial genetic features revealed variation within the ST258 epidemic lineage that was associated with respiratory tract colonization and increased rates of infection. These findings indicate that circulating genetic variation within a highly prevalent epidemic lineage of CRKP influences patient clinical trajectories. In addition, this work supports the need for future studies examining the microbial genetic determinants of clinical outcomes in human populations, as well as epidemiologic and experimental follow-ups of identified features to discern generalizability and biological mechanisms.

16.
BMC Bioinformatics ; 22(1): 70, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588753

RESUMO

BACKGROUND: The quantity of genomic data is expanding at an increasing rate. Tools for phylogenetic analysis which scale to the quantity of available data are required. To address this need, we present cognac, a user-friendly software package to rapidly generate concatenated gene alignments for phylogenetic analysis. RESULTS: We illustrate that cognac is able to rapidly identify phylogenetic marker genes using a data driven approach and efficiently generate concatenated gene alignments for very large genomic datasets. To benchmark our tool, we generated core gene alignments for eight unique genera of bacteria, including a dataset of over 11,000 genomes from the genus Escherichia producing an alignment with 1353 genes, which was constructed in less than 17 h. CONCLUSIONS: We demonstrate that cognac presents an efficient method for generating concatenated gene alignments for phylogenetic analysis. We have released cognac as an R package ( https://github.com/rdcrawford/cognac ) with customizable parameters for adaptation to diverse applications.


Assuntos
Bactérias , Genoma Bacteriano , Software , Bactérias/classificação , Bactérias/genética , Bases de Dados Genéticas , Características da Família , Filogenia , Sequenciamento Completo do Genoma
17.
Clin Infect Dis ; 73(11): e3708-e3717, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-33395473

RESUMO

BACKGROUND: Congregate settings, such as jails, may be a location where colonized detainees transmit methicillin-resistant Staphylococcus aureus (MRSA). We examined MRSA acquisition during incarceration and characterized the genomic epidemiology of MRSA entering the jail and isolated during incarceration. METHODS: Males incarcerated at the Cook County Jail were enrolled within 72 h of intake and MRSA surveillance cultures collected. Detainees in jail at Day 30 were re-cultured to determine MRSA acquisition. A survey was administered to identify acquisition predictors. Genomic sequencing of surveillance and clinical isolates was integrated with epidemiologic and jail location data to track MRSA transmission pathways. RESULTS: 800 males were enrolled; 19% MRSA colonized at intake. Of 184 who reached Day 30 visit, 12 acquired MRSA. Heroin use before entering (OR 3.67, P = .05) and sharing personal items during incarceration (OR = 4.92, P = .01) were predictors of acquisition. Sequenced clinical USA300 isolates (n = 112) were more genetically similar than diverse intake USA300 strains (P < .001), suggesting jail transmission. Four acquired colonization isolates were within 20 single-nucleotide variant (SNVs) of other isolates; 4 were within 20 SNVs of an intake isolate, 2 for an acquisition isolate, and 1 for a clinical isolate. Individuals with genetically similar isolates were more likely to have had overlapping stays in the same buildings. CONCLUSION: There was a high MRSA burden entering jail. Genomic analysis of acquisition and clinical isolates suggests potential spread of incoming strains and networks of spread during incarceration, with spread often occurring among detainees housed in similar locations. Sharing personal items during incarceration is associated with MRSA acquisition and could be a focus for intervention.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Genômica , Humanos , Illinois , Prisões Locais , Masculino , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/epidemiologia
18.
Clin Infect Dis ; 72(11): 1879-1887, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32505135

RESUMO

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA)-and now USA300 MRSA-is a significant intensive care unit (ICU) pathogen; healthcare worker (HCW) contamination may lead to patient cross-transmission. METHODS: From September 2015 to February 2016, to study the spread of MRSA, we enrolled HCWs in 4 adult ICUs caring for patients on MRSA contact precautions. Samples were collected from patient body sites and high-touch surfaces in patient rooms. HCW hands, gloves, and personal protective equipment were sampled pre/post-patient encounter. Whole genome sequencing (WGS) was used to compare isolates from patients, HCWs, and environment. RESULTS: There were 413 MRSA isolates sequenced (38% USA300, 52% USA100) from 66 patient encounters. Six of 66 HCWs were contaminated with MRSA prior to room entry. Isolates from a single patient encounter were typically either USA100 or USA300; in 8 (12%) encounters both USA300 and USA100 were isolated. WGS demonstrated that isolates from patients, HCWs, and environment often were genetically similar, although there was substantial between-encounter diversity. Strikingly, there were 5 USA100 and 1 USA300 clusters that contained similar strains (<22 single-nucleotide variants [SNVs], with most <10 SNVs) within the cluster despite coming from different encounters, suggesting intra- and inter-ICU spread of strains, that is, 4 of these genomic clusters were from encounters in the same ICU; 5 of 6 clusters occurred within 1 week. CONCLUSIONS: We demonstrated frequent spread of MRSA USA300 and USA100 strains among patients, environment, and HCWs. WGS identified possible spread within and even between ICUs. Future analysis with detailed contact tracing in conjunction with genomic data may further elucidate pathways of MRSA spread and points for intervention.


Assuntos
Infecção Hospitalar , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Adulto , Infecção Hospitalar/epidemiologia , Genômica , Pessoal de Saúde , Humanos , Controle de Infecções , Unidades de Terapia Intensiva , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/epidemiologia
19.
mSphere ; 5(6)2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208516

RESUMO

Illness caused by the pathogen Clostridioides difficile is widespread and can range in severity from mild diarrhea to sepsis and death. Strains of C. difficile isolated from human infections exhibit great genetic diversity, leading to the hypothesis that the genetic background of the infecting strain at least partially determines a patient's clinical course. However, although certain strains of C. difficile have been suggested to be associated with increased severity, strain typing alone has proved insufficient to explain infection severity. The limited explanatory power of strain typing has been hypothesized to be due to genetic variation within strain types, as well as genetic elements shared between strain types. Homologous recombination is an evolutionary mechanism that can result in large genetic differences between two otherwise clonal isolates, and also lead to convergent genotypes in distantly related strains. More than 400 C. difficile genomes were analyzed here to assess the effect of homologous recombination within and between C. difficile clades. Almost three-quarters of single nucleotide variants in the C. difficile phylogeny are predicted to be due to homologous recombination events. Furthermore, recombination events were enriched in genes previously reported to be important to virulence and host-pathogen interactions, such as flagella, cell wall proteins, and sugar transport and metabolism. Thus, by exploring the landscape of homologous recombination in C. difficile, we identified genetic loci whose elevated rates of recombination mediated diversification, making them strong candidates for being mediators of host-pathogen interaction in diverse strains of C. difficileIMPORTANCE Infections with C. difficile result in up to half a million illnesses and tens of thousands of deaths annually in the United States. The severity of C. difficile illness is dependent on both host and bacterial factors. Studying the evolutionary history of C. difficile pathogens is important for understanding the variation in pathogenicity of these bacteria. This study examines the extent and targets of homologous recombination, a mechanism by which distant strains of bacteria can share genetic material, in hundreds of C. difficile strains and identifies hot spots of realized recombination events. The results of this analysis reveal the importance of homologous recombination in the diversification of genetic loci in C. difficile that are significant in its pathogenicity and host interactions, such as flagellar construction, cell wall proteins, and sugar transport and metabolism.


Assuntos
Clostridioides difficile/genética , Variação Genética , Genoma Bacteriano/genética , Recombinação Homóloga/fisiologia , Clostridioides difficile/patogenicidade , Diarreia/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Filogenia , Virulência/genética
20.
Microb Genom ; 6(11)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33206035

RESUMO

Bacterial genome-wide association studies (bGWAS) capture associations between genomic variation and phenotypic variation. Convergence-based bGWAS methods identify genomic mutations that occur independently multiple times on the phylogenetic tree in the presence of phenotypic variation more often than is expected by chance. This work introduces hogwash, an open source R package that implements three algorithms for convergence-based bGWAS. Hogwash additionally contains two burden testing approaches to perform gene or pathway analysis to improve power and increase convergence detection for related but weakly penetrant genotypes. To identify optimal use cases, we applied hogwash to data simulated with a variety of phylogenetic signals and convergence distributions. These simulated data are publicly available and contain the relevant metadata regarding convergence and phylogenetic signal for each phenotype and genotype. Hogwash is available for download from GitHub.


Assuntos
Bactérias/genética , Biologia Computacional/métodos , Genoma Bacteriano/genética , Estudo de Associação Genômica Ampla/instrumentação , Estudo de Associação Genômica Ampla/métodos , Algoritmos , Biologia Computacional/instrumentação , Variação Genética/genética , Humanos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...